
iOS Application to Facilitate One-Time Pad Key

Generation and Encryption

Spencer Atkin

18 May 2018



Abstract

This research develops an iOS application that enables users to securely en-
crypt and decrypt messages using one-time pad (OTP) encryption. The key
generation takes place by using the device’s camera to collect sensor noise. In
order to ensure that this noise can be used as a source of true random numbers,
statistical randomness tests were performed on collected data samples. The en-
cryption/decryption aspect of the application allow the user to enter plaintext
messages or a ciphertext, and then encrypt or decrypt them using a key that is
shared with a specified user.



1 Introduction

As more and more privacy abuses committed by large companies are revealed,
it is becoming increasingly apparent that people need to be taking more steps
to protect their personal information online. One of the most important things
people do online is communicate with others. A major part of online communi-
cations are text messages sent using various services. There are currently many
options for securing communications–including messages–sent over the internet
using encryption, but many of the options leave something to be desired. The
most secure methods are too cumbersome and technical for the layman to use.
One example is using GNU Privacy Guard in the command line to manually
encrypt and sign a message, then copy and paste the ciphertext and signature
into a message or send them as files. The simplest options often make security
compromises. For example, the cryptosystem used in Telegram, a popular mes-
saging app, has been found to have security issues [1]. There is a great need for
an application that will allow for extremely robust encryption to be performed
relatively easily. This research focuses on the development of such an applica-
tion. The motivation for this research comes from previous research on offensive
cybersecurity and a desire to develop ways to defend against attackers.

This research consists of an iOS application to perform two main tasks: gen-
erate robust random numbers, and perform the encryption and decryption of
messages. The theory behind such random number generation will be discussed,
as well as the structure of the application and the methodology of its develop-
ment.

2 Background

2.1 One-Time Pad

2.1.1 History

OTP encryption is a relatively old type of encryption that originally used pieces
of paper shared between two people to distribute the key. All aspects of the
cryptography were done on paper, including encryption and decryption of mes-
sages. The pads were truly random–generated one number at a time by dice
rolls. Later, machines were made that could perform OTP encryption using reels
of paper tape that contained the keys [3]. OTP encryption is mathematically
unbreakable as long as several assumptions are true [4]:

• The key must be at least as long as the message being encrypted.

• The key must be truly random – not generated by a computer function,
etc.

1



• The key and plaintext are calculated modulo 10 (digits), modulo 26 (let-
ters), or modulo 2 (binary).

• Each key must only be used once, and the sender and recipient must both
destroy their keys after use.

• There must be only two copies of the key: one held by the sender and one
held by the recipient [3].

2.1.2 Pseudorandom Numbers

Pseudorandom numbers are numbers generated by pseudorandom number gen-
erators (PRNGs). A PRNG generates a sequence of numbers by feeding an
initial seed value into a deterministic algorithm. The sequences are sufficiently
close to truly random for most applications, but they are in fact completely
determined by the initial value. If the same seed is used twice with the same
PRNG, the exact same sequence of pseudorandom numbers will be generated.

There exist PRNGs that are satisfactory for use in cryptography called cryp-
tographically secure PRNGs (CSPRNGs). They are functionally the same to
regular PRNGs, but they have the requirement that an attacker that does not
know the seed has a very small advantage in determining the PRNGs predictable
sequence. CSPRNGs are used for things such as generating keys for AES, an-
other type of encryption. For this and other similar uses, the difference between
a CSPRNG and a true random number generator is negligible. The efficiency
and ease of use benefits, however, are large.

2.1.3 Difficulties

The difficulty with performing OTP encryption on personal computing devices
such as smartphones is the generation of random numbers. For the encryption
to be mathematically unbreakable, a PRNG cannot be used. Even though
CSPRNGs are satisfactory for other cryptography applications, they cannot be
used to generate OTP keys. If there is any predictability in the numbers used
for the key, the encryption is no longer unbreakable.

2.1.4 Key Generation

The solution to the problem of key generation is a true random number genera-
tor. This is a hardware device that uses some property of the physical world to
generate random numbers. They will typically use microscopic processes that
generate statistically random noise, such as electrical noise, or different quan-
tum phenomena. One example of this is reversing a p-n junction in a circuit,
which can cause quantum tunneling effects under certain conditions.

2



2.2 Message Integrity

2.2.1 Hashes

A hash is a one-way function. This means that, given an input, an output can
be determined from the function. However, given a certain output it is nearly
impossible to determine what input generated that output. This property makes
them very useful for cryptography.

f(x) =⇒ y

z =⇒ f(?)

A cryptographic hash function is a special type of hash function. They are espe-
cially useful for cryptographic applications. Ideal cryptographic hash functions
have the following properties:

• The same input always generates the same output

• Computing the function’s output does not take a long time

• It is not feasible to generate the hash’s input from its output except by
trying all possible inputs

• It is not feasible to find two inputs that generate the same output

The current standard of cryptographic hash functions are in the SHA family.
For example: SHA-1 and SHA-256. There are also older hash functions that
have been determined to be cryptographically broken, such as MD5 [6].

2.2.2 HMAC

HMAC (hash-based message authentication code) is a way to verify the integrity
of a message. The algorithm works by iterating over the message and key with
a cryptographic hash function, and returning a message digest. This digest will
be the same if the message and key are identical, but will change dramatically
if any part of either the message or key is different. Because of the nature
of cryptographic hash functions, it is not feasible to find a message that will
produce the same digest as another message. Thus, it can be used to verify that
a message has not changed in transit.

2.3 Bluetooth

Bluetooth is a wireless communications protocol used to transmit data between
devices at a close range (typical range 10m). Bluetooth radios are included
in many smartphones, including Apple, Samsung, and Google devices, as well
as many other popular Android device manufacturers. In 2010, the Bluetooth

3



protocol was upgraded to include Bluetooth Low-Energy (BLE). As its name
implies, BLE allows for bluetooth communications with a low energy require-
ment, and it also allows for faster data transfer speeds [7].

2.4 Cameras

2.4.1 Image Sensors

Digital cameras create images by detecting photons with components called
image sensors. Image sensors consist of grid arrays of photosensors, which are
electrical components that are sensitive to light. When the digital camera makes
an exposure to capture an image, each photosensor measures the number of
photons that hit it during the exposure time. Each photon raises the voltage
that is reported by the photosensor that it hits. The matrix of voltage levels
from the photosensors is then used to generate the final image.

2.4.2 Bayer Filters

A plain photosensor is sensitive to all wavelengths of visible light, and therefore
all colors. In order to capture a color image, each photosensor must know what
color it is seeing. To do this, a Bayer filter is overlaid on the image sensor to
filter colors. The filter is a grid with each row having two colors: either a row
of blue and green or a row of green and red. An example of a section of a Bayer
filter is below:

Figure 1: Section of a Bayer filter

B G B G ...
G R G R ...
B G B G ...

As a result of this pattern, the filter is 50% green, 25% blue, and 25% red. This
mimics the color sensitivity of the human eye. When the camera is exposed,
each photosensor will only detect either red, green, or blue. After the exposure,
the values of adjacent photosensors are interpolated to create a true color image.

2.4.3 Noise

Image sensors have multiple sources of random noise when images are captured
[2][5]. Shot noise occurs during the image exposure process, and results from
the particle nature of light. In a short period of time, each photosensor in an
image sensor has a random probability of detecting a single photon. If the image
is exposed for long enough, however, the random probabilities will no longer be

4



significant – it is likely that each sensor will detect a photon. This is similar to
a coin toss experiment: tossing a coin a very large number of times will result
in about equal heads and tails results. But, given very few trials, one result
(either heads or tails) will tend to dominate. The principle is the same for
image sensor shot noise – If an image is exposed for a short amount of time, or
in an environment with very low light, the random events will dominate.

Another source of noise in an image sensor is read noise. This noise develops
during processing of the image after exposure. The sources are inherent in the
image sensors circuitry, coming from the level of illumination of the sensor,
and its temperature. The electronic circuits connected to the sensor also insert
electronic noise. The read noise of an image sensor is Gaussian, and independent
at each pixel.

2.5 iOS Development

2.5.1 Overview

3rd-party developers have been able to create applications for iOS devices since
March 2008, 5 months after the release of the first iPhone. Originally, only web
applications were going to be permitted on the platform, but a backlash caused
Apple to release the native SDK to the public [8]. In order to have access to
development resources and offer apps on the iOS App Store, developers must
pay a yearly fee.

2.5.2 Technology

Apple provides developers with the Cocoa Touch framework, which is used to
build iOS applications and provides an abstraction layer to the operating system.
Some core frameworks included in Cocoa Touch enable developers to control the
UI, send push notifications, access the camera, and access the device’s GPS. iOS
developers use the Mac IDE called Xcode to write software and compile it for
running on test devices and submitting to the App Store. For the majority of
iOS development history, Objective-C was the language used to write applica-
tion code. In June 2014, Apple announced Swift, a new programming language
for iOS development [9]. Apple claims Swift code is simpler to read, easier to
write, and faster than Objective-C code. It is also more similar to other pro-
gramming languages than Objective-C, so many beginning developers will likely
find Swift easier to learn. As such, many new apps are being written in Swift.
All native iOS framework code is still written in Objective-C, however.

5



3 Development

3.1 Overview

The product created through this research is a mobile application that runs on
iOS devices (iPhone and iPad). Development was done on a Mac computer
using the Xcode IDE. The Swift and Objective-C programming languages were
used. Swift code makes up the bulk of the code base, and certain low-level data
operations are written in Objective-C. A UI framework that makes it easier to
write UI code was used.

3.2 Requirements

This research will be deemed a success if an application is developed that can
perform all the required functions. Namely, the application must be able to:

• Generate random numbers that pass a statistical randomness test

• Connect two peers and generate a shared key between them

• Encrypt plaintext messages and allow the user to export the ciphertext

• Allow the user to import a ciphertext, and decrypt it to a readable plain-
text message

The application should perform all these functions while not being exceedingly
complex in its design or operation, and should require minimal instruction before
a user is able to make use of all its features.

3.3 Research Implementation

The main theory behind this research is OTP encryption. The purpose of the
application is to perform OTP key generation, and OTP encryption and decryp-
tion. To perform the key generation, the design of image sensors was harnessed.
The principles of image sensor noise were used to generate the random numbers
needed for the OTP key and because they were from a truly random source the
encryption performed by the application can be considered to be mathematically
unbreakable.

3.3.1 Randomness

The iPhone camera was used as a source of randomness to generate the OTP
key. To do this, the RAW capture API functionality was used. This means
that when a picture is taken, the raw image data can be handled before any
processing is performed on it. Rather than being returned in the JPEG or PNG

6



format, the image is simply a matrix of values representing the voltage level of
each photosensor in the image sensor.

Each voltage value in the image data is represented as a 16-bit integer. To ensure
that good data is being used, only the two least significant bits of each value
are used. These bits are all concatenated to form one large random bit stream.
At first, this stream was used for the key without any changes. However, when
statistical tests were run on the stream, it was determined that the data tended
to be biased towards 1 with approximately 49% 0s and 51% 1s. To fix this, the
stream is processed before being used for the key according to a method devised
by John von Neumann. The stream is analyzed in bit pairs, and the following
rules are used: if the two bits are the same, they are discarded. Otherwise, the
first digit of the pair is used. Fully:

0, 0 =⇒ ∅

1, 1 =⇒ ∅

0, 1 =⇒ 0

1, 0 =⇒ 1

The result of this method is a stream half as long as the stream before processing,
with any bias towards a certain bit removed. The implementation of this bias
removal algorithm is included below.

1 size_t removeBias(uint8_t *stream , size_t streamSize)

{

2 uint8_t *unbiased = malloc(streamSize);

3 size_t count = 0;

4 int bit = 0; // 0-7: bit positions in the current

uint8

5
6 uint8_t nextInt = 0;

7 for (int x = 0; x < streamSize; x++) {

8 uint8_t thisByte = stream[x];

9 for (int shift = 0; shift < 4; shift ++) {

10 uint8_t masked = thisByte & 0x03;

11 thisByte >>= 2;

12
13 if (masked == 0x01) { // Nibble is 01

14 bit++;

15 } else if (masked == 0x02) { // Nibble is

10

16 nextInt |= (0x01 << bit ++);

17 }

18
19 if (bit == 8) {

20 unbiased[count ++] = nextInt;

7



21 nextInt = 0;

22 bit = 0;

23 }

24 }

25 }

26 memcpy(stream , unbiased , count);

27 free(unbiased);

28 return count;

29 }

For the camera to function properly as a source of randomness, the user will
cover up the device’s camera before capturing an image. This will ensure that a
low amount of light is entering the sensor, and it will be impossible to determine
sensor values based on what the user took a picture of. The camera’s exposure
time was lowered so that shot noise would be a source of randomness alongside
the Gaussian read noise from the sensor.

3.3.2 Encryption/Decryption

The process of encryption and decryption are relatively simple, and they are
fundamentally the same. In order to encrypt a plaintext or decrypt a ciphertext,
a message of N bytes is aligned with the first N bytes of the key that the message
is being encrypted/decrypted for. An XOR operation is then performed on
the pair of byte sequences to achieve the result. The N key bytes used for
this operation are then securely deleted from the device so that they cannot
be recovered or used again. This step is performed for both encryption and
decryption.

Due to the nature of the encryption, if one bit is flipped in the ciphertext, it
will also be flipped in the plaintext. In this way, it is possible for an attacker to
tamper with the message while it is in transit without having to read what the
message says. Thus, a technique must be applied to ensure that the ciphertext
has not been changed in any way after it was encrypted. To do this, an HMAC
digest is computed on the message and sent along with the ciphertext. This
digest is then computed again by the recipient and compared to the received
digest to ensure that they match.

If encryption is being performed, the HMAC digest is simply computed and sent
along with the ciphertext. If decryption is being performed, the HMAC digest
is computed and then compared against the received digest. If they differ, the
message was tampered with.

8



3.3.3 Testing

All testing of the application was performed continuously as the application was
being developed. The researcher used two iPhone devices to run the application
and test all features, including inter-device communications. No formal UI
testing was performed, but the interface was designed to be simple and easy to
comprehend. If tests were conducted, it is expected that the testers would have
little problem discovering how the application’s interface functions.

3.3.4 Limitations

There were no real limitations on the process of this research. All required
devices were possessed by the researcher, including a Mac computer and multiple
iPhone devices that were able to run the application for testing. The research
was also completed within the required time constraints.

4 Discussion

This research has resulted in the development of a mobile application that is
very easy to use, but also gives users access to very secure encryption. It is
now possible for non technical users to protect their online communications in
a way that was not previously possible. In addition, a method was developed
for generating truly random numbers on an iOS device using the camera. This
means that iOS applications now have the ability to to perform cryptography
using random numbers that do not come from a PRNG.

During this research, much was learned about random number generators and
their applications in cryptography. In addition, a large amount of research was
done on image sensors and the way they function so that a method of random
number generation could be developed. A deep understanding was developed of
the sources of the noise that arises when an image is captured, as well as how
raw image data is stored before it is processed.

To extend this research, the application’s features could be extended to make
for a more seamless user experience. For example, a chat feature could be built
in to the application, which would allow users to send and receive encrypted
messages inside the application instead of needing to copy and paste them into
another application. In addition, although the application is simple to use,
onboarding could be shown on the first app launch to ensure that no user will
have any confusion about using the application.

9



References

[1] Jakobsen, Jakob & Orlandi, Claudio. (2015). On the CCA (in)security of
MTProto. Cryptology ePrint Archive, Report 2015/1177. Retrieved 14 May
2018 from https://eprint.iacr.org/2015/1177.pdf

[2] Hong, S., & Liu, C. (2015). Sensor-Based Random Number Generator Seed-
ing. IEEE Access, 3,562-568. http://dx.doi.org/10.1109/access.2015.
2432140

[3] Rijmenants, D. (n.d.). One-time Pad. Retrieved 4 October 2017, from http:

//users.telenet.be/d.rijmenants/en/onetimepad.htm

[4] Wagner, N. (2017). The Laws of Cryptography: The One-Time
Pad.Cs.utsa.edu. Retrieved 4 October 2017, from http://www.cs.utsa.

edu/~wagner/laws/pad.html

[5] Wallace, K., Moran, K., Novak, E., Zhou, G., & Sun, K. (2016). Toward
Sensor-Based Random Number Generation for Mobile and IoT Devices.
IEEE Internet Of Things Journal, 3(6), 1189-1201.
http://dx.doi.org/10.1109/jiot.2016.2572638

[6] Chad R, Dougherty (31 Dec 2008). Vulnerability Note VU#836068 MD5
vulnerable to collision attacks. Vulnerability notes database. CERT Carnegie
Mellon University Software Engineering Institute. Retrieved 10 May 2018.

[7] (2016, June 10). Bluetooth 5 Promises Four times the Range, Twice the
Speed of Bluetooth 4.0 LE Transmissions. Retrieved 8 May 2018, from
https://www.cnx-software.com/2016/06/10/bluetooth-5-promises-

four-times-the-speed-twice-the-range-of-bluetooth-4-0-le-

transmissions/

[8] (2011, October 21). Jobs’ original vision for the iPhone: No
third-party native apps. Retrieved 8 May 2018, from https:

//9to5mac.com/2011/10/21/jobs-original-vision-for-the-iphone-

no-third-party-native-apps/

[9] (2010, September 9). Swift Has Reached 1.0. Retrieved 8 May 2018, from
https://developer.apple.com/swift/blog/?id=14

10

https://eprint.iacr.org/2015/1177.pdf
http://dx.doi.org/10.1109/access.2015.2432140
http://dx.doi.org/10.1109/access.2015.2432140
http://users.telenet.be/d.rijmenants/en/onetimepad.htm
http://users.telenet.be/d.rijmenants/en/onetimepad.htm
http://www.cs.utsa.edu/~wagner/laws/pad.html
http://www.cs.utsa.edu/~wagner/laws/pad.html
https://www.cnx-software.com/2016/06/10/bluetooth-5-promises-four- times-the-speed-twice-the-range-of-bluetooth-4-0-le-transmissions/
https://www.cnx-software.com/2016/06/10/bluetooth-5-promises-four- times-the-speed-twice-the-range-of-bluetooth-4-0-le-transmissions/
https://www.cnx-software.com/2016/06/10/bluetooth-5-promises-four- times-the-speed-twice-the-range-of-bluetooth-4-0-le-transmissions/
https://9to5mac.com/2011/10/21/jobs-original-vision- for-the-iphone-no-third-party-native-apps/
https://9to5mac.com/2011/10/21/jobs-original-vision- for-the-iphone-no-third-party-native-apps/
https://9to5mac.com/2011/10/21/jobs-original-vision- for-the-iphone-no-third-party-native-apps/
https://developer.apple.com/swift/blog/?id=14

	Introduction
	Background
	One-Time Pad
	History
	Pseudorandom Numbers
	Difficulties
	Key Generation

	Message Integrity
	Hashes
	HMAC

	Bluetooth
	Cameras
	Image Sensors
	Bayer Filters
	Noise

	iOS Development
	Overview
	Technology


	Development
	Overview
	Requirements
	Research Implementation
	Randomness
	Encryption/Decryption
	Testing
	Limitations


	Discussion

